This page contains an online interactive calculator to find out the root of a non-linear equation using the bisection method with step-wise calculations and explanations. You can visit the Bisection Method page to get a detailed explanation.
Solution,
Check whether the interval brackets a solution:
f(a)=f(1)=(1)3−2=−1 f(b)=f(2)=(2)3−2=6 Since
f(a)×f(b)=−6≤0, the interval brackets a solution and hence we can proceed further.
n | a | b | f(a) | f(b) | xn=(a+b)/2 | f(xn) | Assign |
---|
1 | 1.000 | 2.000 | −1.000 | 6.000 | 1.500 | 1.375 | b=x |
2 | 1.000 | 1.500 | −1.000 | 1.375 | 1.250 | −0.047 | a=x |
3 | 1.250 | 1.500 | −0.047 | 1.375 | 1.375 | 0.600 | b=x |
4 | 1.250 | 1.375 | −0.047 | 0.600 | 1.313 | 0.261 | b=x |
5 | 1.250 | 1.313 | −0.047 | 0.261 | 1.281 | 0.103 | b=x |
6 | 1.250 | 1.281 | −0.047 | 0.103 | 1.266 | 0.027 | b=x |
7 | 1.250 | 1.266 | −0.047 | 0.027 | 1.258 | −0.010 | a=x |
8 | 1.258 | 1.266 | −0.010 | 0.027 | 1.262 | 0.009 | b=x |
9 | 1.258 | 1.262 | −0.010 | 0.009 | 1.260 | −0.001 | a=x |
10 | 1.260 | 1.262 | −0.001 | 0.009 | 1.261 | 0.004 | b=x |
Therefore, the solution is at
x=1.261