Skip to main content

Bisection Method Calculator

This page contains an online interactive calculator to find out the root of a non-linear equation using the bisection method with step-wise calculations and explanations. You can visit the Bisection Method page to get a detailed explanation.

Given,
y=f(x)=y=f(x)=
Interval: a=a = tob=b =
Error threshold(e)=(e)=
Solution,
Check whether the interval brackets a solution:
f(a)=f(1)=(1)32=1f(a)=f(1)=(1)^3-2=-1
f(b)=f(2)=(2)32=6f(b)=f(2)=(2)^3-2=6
Since f(a)×f(b)=60f(a)\times f(b)=-6\leq 0, the interval brackets a solution and hence we can proceed further.
nnaabbf(a)f(a)f(b)f(b)xn=(a+b)/2x_n=(a+b)/2f(xn)f(x_n)Assign
111.0001.0002.0002.0001.000-1.0006.0006.0001.5001.5001.3751.375b=xb=x
221.0001.0001.5001.5001.000-1.0001.3751.3751.2501.2500.047-0.047a=xa=x
331.2501.2501.5001.5000.047-0.0471.3751.3751.3751.3750.6000.600b=xb=x
441.2501.2501.3751.3750.047-0.0470.6000.6001.3131.3130.2610.261b=xb=x
551.2501.2501.3131.3130.047-0.0470.2610.2611.2811.2810.1030.103b=xb=x
661.2501.2501.2811.2810.047-0.0470.1030.1031.2661.2660.0270.027b=xb=x
771.2501.2501.2661.2660.047-0.0470.0270.0271.2581.2580.010-0.010a=xa=x
881.2581.2581.2661.2660.010-0.0100.0270.0271.2621.2620.0090.009b=xb=x
991.2581.2581.2621.2620.010-0.0100.0090.0091.2601.2600.001-0.001a=xa=x
10101.2601.2601.2621.2620.001-0.0010.0090.0091.2611.2610.0040.004b=xb=x
Therefore, the solution is at x=1.261x=1.261