Skip to main content

Method of False Position Calculator

This page contains an online step-by-step interactive calculator for the Method of False Position which is also known as the Regula-Falsi Method. For a detailed explanation, please visit this page.

Given,
y=f(x)=y=f(x)=
Interval: x0=x_0 = tox1=x_1 =
Error threshold(e)=(e)=
Solution,
Check whether the interval brackets a solution:
f(x0)=f(1)=(1)32=1f(x_0)=f(1)=(1)^3-2=-1
f(x1)=f(2)=(2)32=6f(x_1)=f(2)=(2)^3-2=6
Since f(x0)×f(x1)=60f(x_0)\times f(x_1)=-6\leq 0, the interval brackets a solution and hence we can proceed further.
nnaabbf(a)f(a)f(b)f(b)xn=(a+b)/2x_n=(a+b)/2f(xn)f(x_n)Assign
1111221-1661.1431.1430.507-0.507a=xa=x
221.1431.143220.507-0.507661.211.210.23-0.23a=xa=x
331.211.21220.23-0.23661.2391.2390.099-0.099a=xa=x
441.2391.239220.099-0.099661.2511.2510.041-0.041a=xa=x
551.2511.251220.041-0.041661.2561.2560.017-0.017a=xa=x
661.2561.256220.017-0.017661.2581.2580.007-0.007a=xa=x
771.2581.258220.007-0.007661.2591.2590.003-0.003a=xa=x
Therefore, the solution is at x=1.259x=1.259